

XY MOTION SYSTEM MAX PLANAR

INTENDED USE

The MAX PLANAR air bearing linear motion system is featured by a cross X-Y axes with direct drive linear motors. The X axis is provided with a dual linear ironless motor in gantry configuration, and a dual optical encoder. The MAX PLANAR system is ideal for applications in machining and measuring fields where high precision and dynamics are requested: **optical tests, probe cards test, laser micromachining, wafer handling** and more. The MAX PLANAR series use flat air bearings suitable to move on a granite guide way. Due to the planar architecture the Y carriage move directly on the granite surface to guarantee a very high precision movement.

The system is supplied with ironless linear motors and optical linear encoders.

BENEFITS	
Zero Friction	
No Wear	
No Maintanance	
Smooth and Silent Movement	
No Vibrations	
High Precision Movements	
High Accelerations and Speeds	

INDUSTRIAL SECTORS

OPTICS & MEASUREMENT SEMICONDUCTORS PRECISION MECHANICS BIOMEDICAL AUTOMOTIVE APPLICATIONS

Wafer Handling Optical & probe card inspection Laser Micromachining High Accuracy & High Dynamic Positioning Handling of Semiconductor Flat Panel Processing

rel. 12/05/2023

MAGER S.r.l. Air Bearings via Luigi Cavaglià, 27 10020 CAMBIANO (TO) – ITALY phone +39-011-9441974 web <u>www.mager-ab.it</u> info <u>tech-comm@mager-ab.it</u>

MAGER reserves the right to change any specification without previous advice

MAX

MAIN FEATURES

The MAX PLANAR system is designed with a main granite basement to guarantee a stiff and stable frame. The X stage is provided with large size air bearings designed to increase the complete stiffness and with Mager's magnet preload concept.

The Y carriage moves along the X axis and the air bearing is completely integrated in its bottom plate. The Y carriage is preloaded with a vacuum chamber directly on the granite, the main benefit of this concept is to have a stiff carriage not influenced by the pay load. The ironless linear motors are suitable for a cogging-free movement and the optical encoders can guarantee the proper feedback for a very high accuracy control.

PERFORMANCES

MOTOR	UM	X axis	Y axis
linear motor technology	-	2x ironless	1x ironless
nominal input voltage U	VDC	300	300
force constant Kt	N/Arms	27.5	19.9
back EMF constant Ku	V/(m/s)	22.5	16
electrical resistance R20	Ω	1.28	1.8
continuous current @110°C /c	Arms	5.1	4.4
		UL6S	UM9S

LINEAR ENCODER SPECIFICATIONS	UM	X axis	Y axis
encoders (x axis)	-	2x	1x
technology	-	opt	ical
type	-	incremental with zero	
period	μm	20	
supply voltage	V	5 V ±5%	
signal	-	1 Vpp or TTL	

MAIN FEATURES	UM	X axis	Y axis	
chassis	-	Granite+a	Granite+aluminium	
bearing technology	-	air be	aring	
environment temperature	-	+20°C	+/-1°C	
environment humidity	-	24% ÷	÷ 50%	
total mass	kg	640	Kg	
stroke	mm	550	400	
air consumption	l/min ANR	7	0	
air supply pressure	MPa	0.5 (5	5 bar)	
vacuum consumption	I/min ANR	1	5	
vacuum pressure	MPa	-0.06 (-	0.6 bar)	

PERFORMANCES	UM	X axis	Y axis
motors (x axis)	-	2x	1x
axis configuration	-	gantry	standard
linear motor	-	ironless	ironless
peak force <i>F</i> _p	Ν	2x 480	300
continuous force Fc	Ν	2x 140@110°C	87@110°C
maximum payload M	kg	10)
maximum speed V_{mx} ⁽²⁾	m/s	1.5	5
maximum acceleration amx (1)	m/s²	6	6
positioning repeatability	μm	< 0.05	
positioning stability	μm	<0.05	
accuracy (3)	µm/m	±5	
orthogonality	µrad	<5 (<1 arcsec)	
X straightness	μm	±1	
Y straightness	μm	±1	
X yaw	µrad	<10 (2 arcsec)	
Y yaw	µrad	<10 (2 arcsec)	
X pitch	µrad	d <10 (2 arcsec)	
Y pitch	µrad	ad <10 (2 arcsec)	
X-Y roll	µrad	<10 (2 arcsec)	

NOTES:	 (1) without payload (2) according to the real payload and to the drive and controller performances (3) higher accuracy available with glass scale encoders To ensure optimal system performance the support and frame design should be designed by or in collaboration with the Mager technical department. Different performances and configurations are available, please contact tech-comm@mager-ab.it 		
	Air quality requirement (according to ISO 8573-1:2010)		
	minimum requirement:	class 2.4.1	
	recommended:	class 1.3.0	